domingo, 25 de julio de 2010

Microwave Power Amplifiers

El Diseño de Circuitos Integrados Monolíticos de Microondas (MMIC) en los Estudios del

Ingeniero de Telecomunicación

 

Los sistemas tradicionales de comunicaciones sobre microondas, construidos mediante guías de onda, resultaban especialmente voluminosos y pesados si se comparan con los sistemas sobre placas de circuito impreso. Ello justifica que los primeros circuitos de microondas elaborados con transistores MESFET de AsGa (IBM, 1970-1972) sobre placa de dieléctrico con tecnología híbrida se llamaran "Microwave Integrated Circuits" (MIC). Pero la verdadera integración vendría poco después (1974: primer amplificador MMIC, fabricado por Plessey). Desde su origen, en la primera mitad de los años 70, y hasta la actualidad, la tecnología MMIC ha progresado en las bandas de frecuencia alcanzadas, en las aplicaciones cubiertas y en la capacidad de integración con otras funciones de baja frecuencia. Si inicialmente la tecnología MMIC se localizaba en etapas de conversión de la señal o modulación-demodulación (osciladores, mezcladores, amplificadores de potencia y de bajo ruido), hoy cada vez es mayor la tendencia a incorporar funciones de procesado de la señal en banda base y funciones de control en un contexto mixto analógico-digital. Las habilidades requeridas para el desarrollo de esta tecnología cubren un amplio abanico: desde la fabricación de semiconductores hasta el diseño de circuitos de microondas, pasando por el diseño de circuitos electrónicos analógicos y digitales.

 

Los procesos tecnológicos pueden ser exclusivamente para uso interno de las empresas o bien se abren también a diseñadores externos. Tradicionalmente las fundiciones ("foundries") donde se fabrican estos circuitos asumían la responsabilidad de formar a los ingenieros diseñadores de sus empresas clientes en cursillos específicos de alto costo, que a veces estaban incluidos en los contratos de fabricación. De este modo la docencia del diseño con tecnología MMIC quedaba restringida al ámbito empresarial, mientras que en el contexto universitario la tecnología microelectrónica, la electrónica analógica-digital y el diseño de circuitos de microondas seguían explicándose como campos inconexos. Esta situación se mantiene, salvo excepciones, durante los años 80 y buena parte de los 90 (perviviendo más en el ámbito hispano-parlante) hasta que empiezan a aparecer cursos de especialización y postgrado dedicados específicamente al diseño de circuitos MMIC, y finalmente asignaturas dentro de las titulaciones de grado.

 

En el presente artículo nos referiremos a la puesta en marcha de la asignatura "Diseño de Circuitos Monolíticos para Microondas" (abreviadamente DMMIC) dentro del plan de estudios del Ingeniero de telecomunicación de la Universidad de Cantabria. La asignatura se sitúa en el contexto de la carrera de Ingeniero de Telecomunicación. Se describirán los contenidos de la asignatura y su vinculación con otras asignaturas de la carrera, así como las posibilidades de continuación en postgrado. También se discuten aspectos pedagógicos de la experiencia de impartición hasta el momento. Finalmente se ilustrará el artículo con la descripción de un diseño de un amplificador banda ancha de 2 a 20 GHz hecho por un alumno coautor de este artículo, que ha sido fabricado y medido por el interés de la novedosa topología de dos etapas distribuidas en cascada.

 

 LOS ESTUDIOS DE INGENIERO DE TELECOMUNICACIÓN

 

Los orígenes de los estudios de Telecomunicación en España se remontan al año 1913, cuando quedó formalmente constituida por Real Decreto de 3 de junio, la Escuela General de Telegrafía, a cargo del Cuerpo de Telégrafos. La denominación actual de Ingeniero de Telecomunicación quedó establecida oficialmente en 1920, siendo el título expedido por el Ministerio de la Gobernación a través de la Escuela General de Telegrafía. Hasta el año 1957 no se produjo un acercamiento de los llamados estudios técnicos a la universidad con la ley de Ordenación de Enseñanzas Técnicas de 20 de julio. Dicho acercamiento requeriría aún una serie de pasos legislativos y no concluiría hasta el año 1972, cuando por decreto de 10 de mayo, las Escuelas de Ingeniería Técnica de Telecomunicación se convierten en Escuelas Universitarias de Ingeniería Técnica de Telecomunicación. La temática de los estudios englobaba Radiocomunicación, Telefonía y Transmisión de Datos, Equipos Electrónicos y Sonido e Imagen. Hay que decir que, a diferencia de las denominaciones habituales en otros países, en España la titulación de Ingeniero Electrónico no aparece hasta el año 1991, por ello los temas de electrónica, y en particular los sistemas electrónicos destinados a Comunicaciones, han sido tradicionalmente objeto de la Ingeniería de Telecomunicación.

 

 

 

 

Los estudios de Ingeniería de Telecomunicación en

Cantabria

 

Los estudios de Ingeniería de Telecomunicación comenzaron en Cantabria en el curso 1988/89, siendo su núcleo originario el Departamento de Electrónica, donde existía una tradición de actividad investigadora en sistemas de microondas.

 

El actual Plan de Estudios de Ingeniería de Telecomunicación de la Universidad de Cantabria fue homologado por acuerdo de la Comisión Académica del Consejo de Universidades del día 21 de julio de 1992 y publicado oficialmente el 18 de septiembre de 1992. Dicho plan de estudios conduce a la obtención del título oficial de Ingeniero de Telecomunicación. Las características fundamentales de este plan de

estudios son:

 

1. Duración de 5 años académicos repartidos en dos ciclos: un primer ciclo de tres años y un segundo ciclo de dos.

2. Se basa en el sistema de créditos. Cada crédito equivale a diez horas lectivas, ya sean lecciones teóricas o prácticas.

3. La carga lectiva global de la titulación es de 375 créditos con 224,5 créditos en el primer ciclo y 150,5 créditos en el segundo ciclo.

4. Las asignaturas son cuatrimestrales.

5. En el segundo ciclo, los alumnos deberán elegir una de estas tres especialidades: Radiocomunicaciones, Microelectrónica y Telemática, cursando para ello un mínimo de 20,5 créditos de las asignaturas optativas de la especialidad elegida.

6. Las asignaturas troncales y obligatorias contienen aproximadamente el 75% de la carga lectiva global, mientras que las asignaturas optativas y de libre configuración constituyen el 25% restante.

7. Se contempla la realización de prácticas en empresas para conseguir créditos.

8. Para obtener el título de Ingeniero de Telecomunicación, el alumno deberá realizar un Trabajo Fin de Carrera que equivale a 15 créditos de carácter troncal.

 

No se va a entrar a describir con detalle todas las asignaturas, que pueden consultarse en www.etsiit.unican.es, pero sí nos detendremos más en aquellas que constituyen soporte del aprendizaje de diseño de circuitos MMIC. La asignatura de diseño de MMIC se oferta como parte integrante de la especialidad de Microelectrónica, pero por la aplicación habitual de los circuitos MMIC también resulta escogida por alumnos que cursan la especialidad de Radiocomunicación.

 

Objetivos Docentes de la Asignatura

 

El objetivo fundamental de la asignatura es incorporar a la formación de los Ingenieros de Telecomunicación una base sólida en las tecnologías de microondas con que se elaboran los MMIC que constituyen los bloques elementales en la construcción de los sistemas de comunicaciones actuales. Lo común en estos sistemas es distinguir un tramo que opera en RF y microondas y un tramo de banda base (posiblemente con secciones de frecuencia intermedia). Para el procesado de la señal en RF e IF se requieren funciones como mezcla, amplificación y oscilación, así como otras complementarias (división, multiplicación, atenuación, conmutación, etc.) El alumno deberá revisar los conceptos vinculados a estas funciones y aprender la metodología de diseño de sus implementaciones monolíticas. Deberá asociar distintas metodologías de diseño y distintas tecnologías a diferentes bandas de operación. No se emplean las mismas topologías ni los mismos tipos de transistores en ondas milimétricas que en banda L. Es muy importante inculcar al alumno la visión de los elementos disponibles (transistores, diodos, bobinas, etc.) no solo como símbolos con los que se identifican habitualmente, asociados a unas fórmulas de impedancias o relaciones corriente-voltaje, sino como entidades de una realidad física (una serie de capas de materiales con unos espesores dados) con las limitaciones y efectos parásitos que ello conlleva y su repercusión última en el desempeño de los sistemas. La visión tal vez excesivamente idealizada y matemática adquirida por los alumnos en cursos anteriores lleva a una colisión con la realidad de los diseños prácticos donde, por ejemplo, la precisión hasta la milésima del dB carece de sentido. Otro aspecto importante es la consideración de las diversas funciones de procesado de RF-IF, no como elementos aislados, sino integrables, gracias, precisamente, a la tecnología MMIC. Dicha integración de funciones es una tendencia imparable marcada por criterios de costo y fiabilidad.

 

Se pretende que la asignatura sea útil, tanto a los alumnos que emprendan su carrera en el sector de investigación, desarrollo, fabricación y comercialización de MMIC como a aquellos que trabajen en ingeniería de sistemas y para poder adquirir circuitos MMIC necesiten conocer cómo manipularlos, el significado de las especificaciones y los procedimientos de su verificación.

Visión General de la Asignatura

 

Los contenidos aprobados y publicados en el Boletín Oficial del Estado para la asignatura son: "Componentes Pasivos y Activos. Tecnologías. Modelos de los componentes. Metodología de Diseño. Diseños: RC, LC y con líneas de transmisión. Topologías. Optimización. Parásitos. Análisis de Sensibilidades. Trazado Físico (Layout).

 

Reglas de Diseño. MMIC Multifunción. Celdas Estándar. Conexiones del Chip. Medidas en Continua y RF. Encapsulados". Como ya se ha dicho, la asignatura de Diseño de Circuitos Monolíticos para Microondas tiene una carga docente de 4 horas de clases a la semana durante un cuatrimestre. Las clases de teoría se impartirán en el aula. Las horas de clase de tipo práctico (15) se distribuirán entre prácticas de Simulación y visitas a los laboratorios de medida y de montaje del Laboratorio de Microondas del Departamento de Ing. de Comunicaciones. Ya se ha indicado anteriormente que esta asignatura pretende capacitar al alumno para entrar a formar parte de lleno en la vida profesional. El fin buscado en las prácticas es que, partiendo de unas especificaciones eléctricas y una tecnología a utilizar, el alumno sea capaz, primero, de diseñar el circuito conforme a las especificaciones y, después, de planificar la medida del mismo. Los alumnos interesados en profundizar en estos temas tienen la ocasión de cursar en los estudios de postgrado el curso de Doctorado titulado: Circuitos Integrados de RF y Microondas, en el marco del programa de Doctorado "Tecnologías de la Información y Redes Móviles", que ha recibido la mención especial de Calidad por parte del Ministerio de Educación en los cursos 2003-2004, 2004-2005 y 2005-2006.

 

Método Docente en la Asignatura

 

Para las clases teóricas se usa la clase magistral basada en transparencias proyectadas o directamente en la proyección de la pantalla de un ordenador. Dado el carácter de la asignatura, más de tipo descriptivo, en comparación con otras asignaturas básicas de fuerte base matemática, es especialmente importante la adecuada ilustración de las explicaciones con imágenes de calidad. En las clases de prácticas se hacen dos planteamientos diferenciados: en la primera fase, de introducción a las herramientas, será preciso un seguimiento muy cercano del alumno, con un trabajo muy dirigido. En la segunda fase, se pedirá a los alumnos que realicen un diseño completo por sí mismos, con unas especificaciones iniciales y hasta el diseño final (incluyendo el proyecto de montaje y test del chip diseñado) pero sin ser un trabajo fuertemente guiado para que quede espacio a su propia iniciativa. Este trabajo se realizará con carácter individual y contribuirá a la calificación. En este trabajo práctico se pide a los alumnos que se coordinen entre sí para definir cuestiones de la tecnología en la que se van a realizar los diseños o para definir una partición de la oblea en la que incluyan todos los diseños. De este modo se pretende impulsar la capacidad de trabajo en equipo y de coordinación con sus compañeros.

 

DISEÑO DE AMPLIFICADOR DE DOS ETAPAS DISTRIBUIDAS EN CASCADA (2-CDSDA).

 

La combinación de las propiedades de constancia de ganancia y adaptación de los amplificadores distribuidos, junto con la posibilidad de obtener valores más altos de ganancia mediante el encadenamiento en cascada, inspiró la topología del presente amplificador [14], adecuado para aplicaciones de radar. La tecnología empleada fue la del proceso D01PH de OMMIC (Limeil, Francia), (ft ~100 GHz, fmax ~150 GHz), que emplea transistores HEMT basados en GaAs de 0,13 μm de longitud de puerta, para los que se proporciona un modelo no lineal escalable valido para simulaciones en pequeña y gran señal y de ruido. Existen también librerías de modelos de pasivos (resistencias, condensadores, inductancias y líneas de transmisión). Estas librerías están disponibles para simuladores como ADS (Agilent). Otro rasgo importante del proceso es la posibilidad de usar una capa de metal extra de 2 μm de grosor, que lo hace adecuado para aplicaciones de potencia.

 

Se ha descrito el contexto docente, los contenidos, el programa detallado y el método de evaluación de una asignatura sobre diseño de circuitos monolíticos de microondas en los estudios del Ingeniero de Telecomunicación de la Universidad de Cantabria, pionera en incluir estos temas en asignaturas ordinarias de estudios de grado, con especial énfasis en los objetivos didácticos y la orientación práctica de la asignatura. Se ha ilustrado la presentación con un diseño realizado por un alumno de la asignatura, que fue fabricado y medido por el interés de su novedosa topología y buenos resultados.

 

Pablo Jose Mago

C.I. 18146112   

EES

No hay comentarios:

Publicar un comentario